
1

ROB 550 Armlab
Rahul H Kumar, Tyler Smithline, Xiujin Liu
{rahulhk, tylergs, jeanliu}@umich.edu

Abstract — This paper describes an approach to
using a 5 DOF robot arm to autonomously manipu-
late objects within a workspace. This process requires
the integration of many sub-tasks, including camera
calibration, computer vision, forward kinematics,
inverse kinematics, and path planning. By developing
methods to accomplish each of these tasks, we have
programmed the robot arm such that it can identify
and distinguish blocks of different sizes and colors
and move them to target destinations. It can also
accomplish more complicated tasks such as stacking
and sorting.

I. INTRODUCTION

Serial robotic arms have enormous potential to in-
crease the efficiency, accuracy, and safety of tasks that
are traditionally difficult for humans. In order for robotic
arm systems to accomplish practical tasks within a
workspace, they must combine vision and manipulation
functionality. We set out to develop a math-based compu-
tational approach to program a robot arm with computer
vision and manipulation capabilities.

Our system had a number of high-level goals. First,
it needed to be able to determine and represent the
locations of objects within the work space in a world
coordinate system. Next, it needed to detect blocks
of different colors, sizes, and shapes. Additionally, the
system needed to determine the necessary joint angles to
move the arm to the desired locations in the workspace.
Finally, a state machine is required to determine when
to execute specific tasks and a Graphical User Interface
is necessary for intuitive control from the robot operator.

This project builds on decades of prior work in robot
kinematics and computer vision. Additionally, it makes
use of existing frameworks and packages such as Robot
Operator System 2 (ROS2) and OpenCV.

The success of the work laid out in this paper will
be evaluated by the ability of the robot to perform a
set of block manipulation tasks. Several examples of the
system’s performance on a variety of tasks will be given.

II. METHODOLOGY

A. Computer Vision

1) Camera Calibration: In order to determine where
objects are within the workspace, it is necessary to

determine a mathematical relation between the image
produced by the camera and the world frame. This task
requires knowledge of two relations: The first between
camera coordinates and image coordinates called camera
intrinsic matrix, and the second between camera coordi-
nates and world coordinates called extrinsic matrix.

The camera used in this study produces an RGB and
depth value for each pixel represented by (u, v, d) coor-
dinates within the image frame. Each (x, y, z) coordinate
in the workspace corresponds with a pixel coordinate and
depth. This relationship is illustrated by a diagram of the
pinhole model seen in (Fig. 8) in the appendix.

The intrinsic matrix converts the coordinates in the
camera frame to image frame pixel coordinates with (1).

uv
1

 =
1

Zc

α s uo

0 β vo

0 0 1

[
I | 0

]
Xc

Yc

Zc

1

 (1)

In (1), the α and β represent the focal length of the
camera in the camera coordinate’s x and y directions.
The values uo and vo represent the offset between the
camera’s principal axis and the center of the image plane.
The principal axis is the line perpendicular to the image
plane that passes through the pinhole of the camera.
Finally, s is the axis skew of the camera, which is zero
for a true pinhole camera.

The intrinsic camera parameters were determined us-
ing the ROS camera calibration module described in
[1]. We moved a checkerboard of known size through
the workspace at different orientations, distances from
the camera, and skew angles. The module extracted
key points at the intersections of the checkerboard
squares and the distances between them to information
to determine the intrinsic parameters of the camera.
We performed this calibration method five times, and
calculated the average intrinsic calibration (2).865.99 0 636.59

0 870.47 355.65

0 0 1

 (2)

The factory calibration taken using the linux command
[ros2 topic echo /camera/color/camera info] is (3).

2

902.57 0 660.20

0 903.04 377.16

0 0 1

 (3)

Since the camera’s coordinate system does not line
up with world coordinates, an extrinsic matrix allows
us to transform world coordinates to camera coordinates
and vice versa using the inverse extrinsic matrix. This
relationship is given by (4) below.

Xc

Yc

Zc

1

 =

[
R T

0 0 0 1

]
×

Xw

Yw

Zw

1

 (4)

The extrinsic matrix consists of a 3×3 rotation matrix
(R) and 3× 1 translation matrix (T) that are composed
to form a 4× 4 homogeneous transformation matrix.

In our study, we calculated the extrinsic method us-
ing two methods. The first method was through hand-
measuring the distance and angle offsets between the
center of the world frame and center of the camera frame.
We measured the following offsets:

∆x(mm) ∆y(mm) ∆z(mm) θx(
◦) θy(

◦) θz(
◦)

10 162 1040 −9 0 0

Using a standard rotation matrix about the x-axis
for R, we produce the nominal extrinsic transformation
matrix:

Hnom =

1 0 0 10.0

0 −0.9816 0.1908 162.0

0 −0.1908 −0.9816 1040.0

0 0 0 1

 (5)

The second method we used to obtain an extrinsic
matrix transformation is through calibration using April
Tags [2] at known locations. This method uses the ROS
April Tag module to extract the image coordinates (u, v)
of each April Tag in the workspace. These are then
drawn on the control station GUI as seen in (Fig. 9)
in the Appendix. The visualization made it apparent that
the detections are quite accurate and also made it easy
to validate when one of the four April Tags was not
being detected due to poor lighting conditions, or if an
unintended tag was being detected in the workspace.

This method also requires knowing the world coordi-
nates (xw, yw, zw) of the April Tags. Then the OpenCV
function solvePnP [3] can be used by calling: [ret, rvecs,
tvecs = cv2.solvePnP(world points, image points, cam-
era matrix, distCoeffs = dists)] The function takes the
list of world points, image points, the camera intrinsic
matrix, and distortion coefficients as parameters and
outputs the rotation vector and translation vector. It is
then trivial to convert these values into a homogeneous

transformation matrix. This method is used every time
the calibration routine is ran, and yields slightly different
results each time. One instance of the extrinsic matrix
produced is given in (6).

Hcal =

1.000 −0.007 0.004 47.56

−0.007 −0.976 0.220 116.94

0.002 −0.220 −0.976 1055.61

0 0 0 1

 (6)

2) Workspace Reconstruction: The extrinsic and in-
trinsic matrices defined previously can be utilized to
convert pixel coordinates (u, v, d) to world coordinates
(Xw, Yw, Zw). This relationship is given in two parts
by (7), where H and K are the extrinsic and intrinsic
matrices of the camera system.
Xw

Yw

Zw

1

 = H−1

Xc

Yc

Zc

1

 ,
Xc

Yc

Zc

 = Zc(u, v)K−1

uv
1

 (7)

These equations constitute the pixel to world()
function.

We improved the accuracy of the calibration by
adding distortion coefficients to the SolvePnP func-
tion. These coefficients were obtained by running
the linux terminal command [ros2 topic echo /cam-
era/color/camera info] [4]. The distortion coefficients
are: [0.168, 0.542, 0.001, 0.001, 0.522]. The results of
this change are discussed later on.

Since the camera is positioned non-parallel to the
workspace, the image appears as a trapezoid. In order
to fix this, we used a homography to warp the image
into a rectangle. A homography matrix H warps each
point within the image as shown in (8).

w

u′v′
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 1

u0v0
1

 (8)

We multiply out these matrices in (9) and solve for
u′ and v′ in (10) to see what each element of the
homography represents.

wu′ = h11u0 + h12v0 + h13

wy′ = h21u0 + h22v0 + h23

w = h31u0 + h32v0 + 1

(9)

u′ =
h11u0 + h12v0 + h13
h31u0 + h32v0 + 1

v′ =
h21u0 + h22v0 + h23
h31u0 + h32v0 + 1

(10)

From these equations, we can see that u′ and v′ are
both linear combinations of u0 and v0 where the values

3

of homography matrix H are the coefficients.
The values of the 3 × 3 matrix H are calculated us-

ing the OpenCV function cv2.findHomography(src pts,
dest pts) where src pts are the pixel coordinates of the
April Tag centers and dest pts is a set of arbitrary points
that form a rectangle with the same aspect ratio as the
original April Tag locations. These values were manually
tuned such that the workspace grid extends nearly to the
top and bottom of the image. Then the warp is applied to
the image using the function cv2.warpPerspective(image,
homography). The results of this function can be seen
with estimated grid-points projected onto the image in
(Fig. 4).

3) Block Detection: The approach taken to detect
blocks of different shapes, sizes and colors in this task
involves usage of classical computer vision methods.
First, the cv image obtained from the image listener
callback function and is used to obtain the current
video frame as an image. A copy of this image is
passed through the calibration procedures described in
the previous section and then a warp perspective trans-
form is applied on it to obtain a rectangular overhead
view of the workspace. The transformed image is then
converted from RGB color space to HSV. This is done
as HSV color space is better for colored block detection
than RGB space because it separates color information
(hue) from brightness (value), making it more robust
to variations in lighting conditions. At the same time,
a helper program is used to set the HSV range for
different colors given in the workspace. Sliders are used
to determine HSV value thresholds for different colors
as shown in (Fig. 1). These recorded ranges are stored
by color in a dictionary for future use.

Fig. 1: HSV tracker

Color masks are generated individually using the
inRange() function in opencv. Additionally, the pixels
containing the robot and the objects in the workspace
outside the board are filled with zeros so that they do
not affect the detection process. Binary thresholding is
applied on the masked image and the find contours()
function in OpenCV is used to find contours, which are
essentially curves in the image that enclose a blob of a
single color. This function returns a vector of points that
constitute different contours and all the vectors are stored
in a single matrix to allow for easy access of individual

contours. The obtained contours are looped through to
access individual blobs.

µpq =
∑
x

∑
y

xpyqI(x, y) (11)

Individual contours whose area is more than the mini-
mum area threshold are used for further calculations. The
contour area is found using the image moment formula
shown in 11. Setting p and q both to zero will give us the
area of the region enclosed by the contours. When the
area is found to be greater than the minimum threshold,
the centroids of the contour are calculated by setting
one of p and q to zero to get the x and y coordinates
respectively. The shape of the contour is estimated using
the approxPolyDP() function. The return value of this
function is the number of sides in the detected blob,
which is used to estimate and record the shape. Similarly,
minAreaRect() function is used to obtain the corners
of the shape and its orientation angle. The function
returns the four corners of the smallest rectangle that
encloses the contour. The euclidean distance between
each set of adjacent points is calculated and the aspect
ratio of the rectangle is found. The angle and shape
are recorded along with the centroid of the block and
returned from the block detector function. The algorithm
1 shown represents the pseudocode of the block detec-
tion methodology discussed above. The algorithm also
deals with cases where blocks of different heights are
stacked on top of each other by using a simple height
thresholding method. This algorithm is implemented by
looping multiple times from a set height to zero. The
block detections are recorded only when the z value of
the world coordinate is greater than the current height
threshold. The height threshold is decreased iteratively
until it reaches zero and breaks the loop.

B. Robot Control
1) Forward kinematics: The objective of forward

kinematics (FK) is to determine the position of the end
effector in the world frame given the angles of each of
the joints in the configuration space. We approached the
implementation of forward kinematics using the Denavit-
Hartenberg (DH) method.

Based on the technical drawing for the RX200 arm
in (Fig. 11) in the appendix, we know the lengths of
each link of the arm. In addition, we know the directions
of positive joint rotation from using the direct control
feature of the provided control station interface. Combin-
ing the known robot parameters with the instantaneous
joint angles from the rxarm.get positions() function, we
present the FK dh() function that determines the position
of the end effector in the world frame.

To implement the forward kinematic function, the first
step is to determine the DH-parameters for the robot arm:

4

d, θ, a, and α. By simplifying the technical drawings
into five links connected by five rotary actuators, we can
assign a coordinate frame to each rigid body as seen
in (Fig. 2). Applying DH conventions from [5], we can
determine the DH-parameters as shown in (Table I). The
parameters di, θi, ai, and αi can be described as distance
along zi−1, angle from xi−1 to xi about zi−1, distance
along xi, and angle from zi−1 to zi about xi respectively.
Then, we use the function rxarm.get positions() to get
the instantaneous joint angles for each joint: θ1, θ2, θ3,
θ4, θ5, completing our DH table for a specific instance
in time.

With these DH-parameters, we can find the matrix
for each coordinate system transformation from (12). A
total homogeneous transformation matrix is produced
if we post-multiply the rotation matrix for each stage
together. In addition, we need to transform from
world frame to the robot base coordinates used in
DH parameters. Therefore, we pre-multiply by matrix
M (13), which rotates the frame about the z-axis.
Combining these operations produces the homogeneous
transformation matrix in (14).

Fig. 2: Axes Used for DH Parameter Generation

joint d θ a α

1 0 −π/2 103.91 θ1

2 205.73 0 0 − arctan(4) + θ2

3 200 0 0 arctan(4) + θ3

4 0 π/2 0 π/2 + θ4

5 0 0 174.15 π + θ5

TABLE I: DH Parameters

Ai =

cθi −sθicαi

sθisαi
aicθi

sθi cθicαi −cθisαi aisθi
0 sαi cαi di

0 0 0 1

where : sθi = sin θi, cθi = cos θi

and sαi
= sinαi, cαi

= cosαi

(12)

M =

cosπ/2 − sinπ/2 0 0

sinπ/2 cosπ/2 0 0

0 0 1 0

0 0 0 1

 (13)

H = M ∗A1 (q1)∗A2 (q2)∗A3 (q3)∗A4 (q4)∗A5 (q5) (14)

To extract position information of end effector from
final homogeneous transformation matrix, we can use the
relations of (15) referencing the 4× 4 transformation H.

x = H[0][3], y = H[1][3], z = H[2][3]

θ = arccos(H[2][2])

ψ = arccos(−H[2][0]/ sin(θ))

ϕ = arcsin(H[1][2]/ sin(θ))

(15)

2) Inverse kinematics: The objective of inverse kine-
matics (IK) is to determine the joint positions required to
move the end effector to a specified location in the world
frame. It will take a desired position and orientation of
end effector and output the necessary joint angles to
move the end effector to that position. The algorithm is
implemented inside the IK geometric() function, which
takes the position and wrist angle of the end effector
as parameters: x, y, z, ψ, block angle, and returns the
necessary angle for each joint: θ1, θ2, θ3, θ4, θ5. Since
we want the gripper to grasp and place the blocks
vertically, we always set ψ equal to π/2, and ϕ is
determined from the orientation of the blocks.

To be more specific, we start by finding base angle
θ1 seen in (Fig. 10) in the appendix, which is calculated
using the x and y coordinates of the end effector using
(16). For θ2, θ3, θ4, we can treat the arm as a 3-
link RRR arm like the one in (Fig. 3), which allows
us to produce the set of equations (17) with known
parameters: l1, l2, l3 (link lengths), and x, y, z, θ
(position and orientation of the end effector). Finally, we
use a numerical solver method (scipy.optimize.fsolve) to
get the unknown values: θ1, θ2, θ3 (joint angles).

One consequence of using the numerical method is
that some joint configurations will be outside of robot’s
reachable workspace, which will cause some issues. We
use recursion to solve this problem. We manually set
up a joint angle allowable range constraint and if we
get solutions outside of our specified range, we will try
to solve the system again and under slightly different
conditions. To avoid infinite recursion for an invalid pose
we limit the maximum recursive depth to 25 cycles, but
this rarely happens in practice.

θ1 = arctan 2(x, y) (16)

5

Fig. 3: 3-link RRR Arm

l0 + l1 cos(−θ2 + arctan(4)) + l2 cos(−(θ2 + θ3)+

l3cos(−(θ2 + θ3 + θ4))− z = 0

l1 sin(−θ2 + arctan(4)) + l2 sin(−(θ2 + θ3)+

l3 sin(−(θ2 + θ3 + θ4))− r = 0

θ2 + θ3 + θ4 − ψ = 0

where : r =
√
x2 + y2

(17)
3) Path planning: Three major challenges

encountered by the path planning algorithm is as
follows: First, the wrist rotation angle of the robot must
be set so that the blocks are picked up in a smooth
manner and the arm can reach as far as possible in
the workspace. This problem is tackled by offsetting
the wrist rotation by 90 degrees when the pickup
position is less than −45 degrees or more than 45
degrees, as shown in (algorithm 2) in the appendix.
This ensures that the gripper does not hit the block
during the pickup process. Second, way-points need
to be set before and after pickup and drop locations
so that the arm can avoid collisions with other block
stacks when carrying out its trajectory. This is done by
using appropriate pickup and drop offsets customized
for each task. Finally, The moving time is set based on
the the maximum angular displacement of all the joints
while between two way-points. The moving time is
calculated using time = max disp/max vel such that
the arm movement is as fast as possible at each step of
the trajectory.

4) State machine: The state machine communicates
with the control station, camera node and rxarm node to
implement different states for different tasks. The various
states implemented in the state machine are as follows:

• The states ‘idle’, ‘manual’ and ‘estop’ were previ-
ously defined to implement the fundamental actions
of the robot so that other tasks could be performed
using it.

• The ‘execute’ state sets the joint positions to some
predefined waypoints that can be used to test the

movement of the manipulator.
• The ‘recordPoints’, ‘playback’ and ‘clear’ states are

used in the teach and repeat tasks. The path plan-
ning algorithm explained in the previous section is
used to set the velocity of the arm such that it is
directly proportional to the maximum displacement.
This state also plots the joint positions after imple-
mentation of the ‘playback’ state.

• The ‘calibrate’ state finds the extrinsic matrix using
the april tag positions and solvePnP() function and
implements the warping of the image frame using
the calculated perspective transform so that the
workspace is visible in a rectangular overhead view.

• The event states are defined such that they use
the block detection and the IK functions described
previously to conduct tasks of autonomous pick and
place challenges described in the competition.

III. RESULTS

A. Computer Vision

The results of the combined intrinsic, extrinsic, and
perspective warp are visualized in (Fig. 4). The figure
shows that the workspace grid stretches beyond the dots
at high magnitudes of x and y, indicating that the image
does not have perfectly even spacing between lines.

Fig. 4: Grid-points Projection on Warped Image

To verify the extrinsic calibration, we compared
the results of the pixel to world() function to the
known world coordinates. Evidence of the accu-
racy of the calibration was obtained by measur-
ing the (Xw, Yw, Zw) coordinates through the GUI
for stacks of large blocks at the following points:
(0, 175), (−300,−75), (300,−75), (300, 325). This data
is tabulated in Table II in the appendix and shows
that Root-Mean-Square Error is 5.6 mm averaged over
all measured locations, and 4.3 mm for locations on
the floor of the workspace. This should be within an
allowable range of error.

The output of the block detection algorithm is shown
in (Fig. 5). While the blocks of all colors and sizes were

6

detected successfully as required by the objective, there
were a few cases when the algorithm did not perform as
well as expected. These are explained later on.

Fig. 5: Block Detection Output

To verify the obtained results from block detection
centroids, an experiment was conducted where blocks
were placed at known positions in the workspace. After
converting the block detection results from image plane
coordinates to world coordinates, they were compared
to the known coordinates of the blocks, as visualized
in (Fig. 6). As seen in the figure the two plots overlap
reasonably well, demonstrating that the block detection
algorithm measures accurate centroid positions. It is
observed that the error of block detection grows when
the blocks are moved further from the board’s center.

Fig. 6: Block Detection Accuracy Test Results

The shapes of the blocks were estimated using
the approxPolyDP() method in the previous section
and scale ratio calculated using adjacent points from
minAreaRect() function in opencv. While cube, cuboid
and triangle blocks were recognised correctly, the al-
gorithm made false predictions for semi-circle blocks.
The areas of the detected blocks were used to categorize
the object into small or large blocks. The difference in
area between blocks of different sizes was large enough

that there was no overlap in the size ranges used for
classification. The block detection algorithm was tested
under different lighting conditions and on blocks of
different reflection coefficients but of the same color.
This test proved to require tuning of the HSV color
bounds to fit the blocks with high reflections into the
classification algorithm. The block detector also works
for cases where blocks of different sizes are stacked
on top of each other due to the height thresholding
approach explained in the methodology. Overall, the
block detection algorithm was implemented successfully
and used for subsequent autonomous manipulation tasks.

B. Robot Control
Generally speaking, the robot was successful in nav-

igating to all locations needed to pick up and drop
off blocks. For the blocks within the QR code region,
the success rate of the numeric solver was 100%. For
blocks near the robot arm, the solver experienced a
higher percentage of failures since the numerical method
could not always reach a valid answer. The inverse
kinematic results also demonstrated some error, which
was apparent from the block not always being centered
within the gripper at locations where the calibration and
block detections were validated to be accurate.

The path planning algorithm worked well for most of
the tasks, with a few outliers where the performance can
be improved. The speed of the arm changes proportional
to the displacement between two way-points which is ex-
pected. The parameterized vertical offsets around pickup
and drop points ensures that the arm can finish all of it’s
given tasks without colliding with other blocks or stacks
of blocks in the workspace. However, there exists a few
edge cases where this approach either fails or proves
inefficient. When a single block is placed behind a very
tall stack of blocks that is in the trajectory of the arm,
the manipulator might collide with the tall stack. This
challenge is still encountered even when using the height
thresholding approach explained in previous sections.
Additionally, the wrist angle (ψ) of the arm at the pickup
and drop locations is sometimes not exactly 90 degrees
as required by the program because some positions are
not reachable at this angle by the numerical IK solver.
In these cases, the solver finds a a wrist angle as close to
the desired value as possible, allowing the manipulator
to complete the given task with negligible error.

The states described in the previous section were
implemented successfully. The ‘execute’ state made the
robot follow the predefined trajectory in under 30 sec-
onds. The teach and repeat task was optimized using the
desired velocity and moving time as described in the path
planning section and the task was tested to be able to
repeat it’s actions for more than 10 times while swapping
blocks among three positions. (Fig. 7) shows the joint

7

position after three iterations of the teach and repeat task.
The calibration state was successful in getting the extrin-
sic transform and warping the image to overhead view.
For each of three events, custom states and algorithms
were implemented to autonomously complete the given
tasks using block detection, Inverse Kinematics, and path
planning methods discussed previously.

Fig. 7: Teach and Repeat Graph for 3 Iterations

C. Competition Results

Our robotic arm system was validated through a com-
petition with five different events. We chose to compete
in three of the five events, opting for the highest level
of difficulty for each task. In the first event, Pick’n sort,
we successfully sorted nine blocks of varying colors and
sizes and received (300/300) points. In the second event,
Pick’n stack, we successfully stacked the small and large
blocks and received (210/210) points. Finally, we were
able to sort large and small blocks by rainbow color
while avoiding distractor blocks and scored (497/500)
points, losing 3 points for imperfect lines.

IV. DISCUSSION

A. Camera Calibration

Throughout the competition events, it was evident
that there was some error in the calculation of world
coordinates for detected blocks. In this section, we
discuss the decisions made in the calibration method and
some of the potential sources of error.

Compared to the manual intrinsic, the factory intrin-
sic matrix has a fx and fy that are closer in value,
meaning that the factory calibration portrays the camera
as closer to a perfect pinhole model than the manual
calibration does. The manual intrinsic matrix data varied
substantially between calibration trials and also differed
from the factory calibration. One source of error may

have been inconsistencies in checkerboard printing that
resulted in color and size variance between squares.
Additionally, changes in lighting between trials may have
produced slight deviations in the localization of key-
points on the checkerboard. Overall, the factory intrinsic
matrix produced more accurate world coordinates in
pixel to world() because the factory calibration was
likely performed with more consistent lighting, more
than five trial, and may have included more positions
and orientations. Due to these differences, we trusted
the factory calibration more than the manual calibration
and chose to use it for the workspace reconstruction
algorithms.

In terms of the extrinsic calculation, the calibrated
extrinsic performs much better than the manual one. One
potential reason is that the calibrated extrinsic matrix
accounts for small amounts of rotation about the y and
z axes that were not considered in the hand-calculations.
Additionally, the nominal matrix has high amounts of
human error from taking measurements by hand, and
would not be sufficient for pixel-to-world conversion.

While the automatic extrinsic calibration is better
than the manual one, it is not perfect. One attempt to
mitigate calibration error was to solve for the extrinsic
with distortion coefficients; This improved the pixel-
to-world accuracy but some error remains. There are
many possible causes. For starters, the accuracy of the
calibration depends on the ability of the camera to
accurately locate the April Tags. Changes in lighting or
vibration of the camera between calibrations may result
in a mismatch between the calibration conditions and
actual working conditions. Finally, since the intrinsic
camera matrix is passed to solvePnP(), any error in
calculating the intrinsic will propagate into the extrinsic
calculation.

An additional metric to evaluate our camera calibra-
tion is the grid-point of dots projected on the image as
seen in (Fig. 4). Since the dots are an evenly spaced
array, it is evident from the figure that the calibration
produces highly accurate results near the origin but
the accuracy of the pixel-to-world conversion drops off
further away. This is supported by our measurements of
block world coordinates through the GUI. The data in
(Table II) reveals that the average RSME for the blocks
centered at (0, 175) is 2.49 mm but the average of blocks
at (300, 325) is 6.57 mm. These results suggest that the
extrinsic calibration is accurate since the centers of the
grid and workspace align, but the intrinsic focal length
parameter has some error.

B. Block Detection

The shape estimation part of the algorithm works by
calculating the number of sides in the detected polygon
initially. This will successfully classify triangles, arches

8

and cylindrical blocks. However, cubes, cuboids and
semi-circular blocks all have 4 sides from the bird’s-eye
view. The algorithm tackles this problem by calculating
the aspect ratio which is used for classification. However,
there exists cases where the algorithm throws false
positive results in classifying semi-circular arches as the
threshold values for classifying blocks into cubes or
semicircles are very close.

The size classification of the blocks works well for
most of the tested cases since the large blocks have
roughly three times the area of small blocks. The prob-
lem of stacked blocks of different sizes was dealt with
by using the height thresholding approach discussed in
the previous sections. This allowed for stacking of small
blocks on big blocks as the block at the greater height
would be recorded first and then the block detection code
would run again for the lower block. However, a few
tests did detect a big block under a small block as a
second small block at the same location due to z values
of the respective centroids being very close to each other.
This problem was dealt with by decreasing the step
size of the height threshold iteration. Another problem
was that the algorithm would fail to detect blocks under
shadows or with strong specular reflections. The reason
for this is that the value and saturation of the block color
changes when the lighting conditions change. This was
fixed by tuning the value and saturation bounds for the
recorded colors. The hue value remain the same under
different light intensities. It is worth noting that the red
colored blocks required wrapping of hue value to the (0-
10) range and hence required a bitwise ‘and’ operation
of two HSV masks.

C. Forward Kinematics and Inverse Kinematics
In order to determine the accuracy of the Forward

Kinematic results, we used direct control mode to move
the robot arm to known positions such as the April
Tags. We then compared the FK estimate to the world
coordinate to determine the FK calculation accuracy.
This testing revealed consistent error in pose estimates,
but we fixed it by adding offsets to the measured encoder
angles to account for constant error that may have arisen
from sensor drift.

For Inverse Kinematics, a singular configuration oc-
curs when the end effector is located on the axis of
z0, causing infinite solutions for θ1 and result in an
unsolvable problem. To avoid this condition, it may
have been beneficial to solve the Inverse Kinematic
problem in closed form by using geometry. Compared
to our approach of numerically solving a system of
equations, which is usually non-closed and has more
than one answer, it’s faster to compute, and provides
explicit knowledge of degeneracies and singularities. In
addition, instead of using a symbolic method, we used

a numerical method to solve the IK problem, which
resulted in the system occasionally returning an invalid
pose outside of the robot boundary. To solve this problem
and get valid results, we had to use a recursive solution
that attempted to solve the IK problem under slightly
different conditions. Even so, it still failed occasionally.
A numerical solving method could have helped our
algorithm avoid failures and work more efficiently.

D. Path Planning

The vertical offset approach to adding waypoints in
between pickup and drop locations so that the arm can
avoid collision sometimes fails in edge cases described
in the results section. This is because the offset might
not be enough for the gripper to move over the stack
and execute the grasping process. The height threshold-
ing process discussed previously helped in solving this
problem as the arm would complete the part of the task
dealing with the blocks with greater height, i.e. the ones
on top of the stack before it tried to grasp the lower
blocks, thus avoiding collision. As discussed earlier,
some poses in the workspace could not be reached by the
robot. Hence an iterative IK solver was used. Whenever
the numerical IK failed to reach a certain point, a new
destination was fed which was slightly offset from the
desired point, so that the robot could still complete the
task. This resulted in wrist rotation not being exactly at
the desired angle at some positions in the workspace.

V. CONCLUSION

In this paper, implementation of a framework for an
autonomous 5 DOF manipulator is discussed. Various
algorithms used to tackle robot control and computer
vision problems are explained. A classical approach to
robot perception is taken, and the Denavit-Hartenberg
method and a numeric solver are used to implement
inverse and forward kinematics respectively. The soft-
ware designed was implemented on a RXArm in ROS2
ecosystem and tested for various edge cases such that
the robot performs to it’s maximum ability in executing
the given tasks in the workspace.

The future scope for this project may include the
addition on learning-based methods for perception as
this would avoid the external tuning required in case of
changing light conditions that was discussed earlier in
the report. Additionally, learning based algorithms could
increase accuracy of shape detection and improve col-
lision avoidance in trajectories by using previous block
location data. This paper showcases robot perception and
manipulation fundamentals that form the backbone of
industrial robotics; With improvements such as learning-
based methods we will have a strong groundwork for
endless robotic arm applications.

9

REFERENCES

[1] Camera calibration. Accessed: 2023-10-18. [Online]. Available:
https://navigation.ros.org/tutorials/docs/camera calibration.html

[2] E. Olson, “Apriltag: A robust and flexible multi-purpose fiducial
system,” University of Michigan APRIL Laboratory, Tech. Rep.,
May 2010.

[3] (2023) Perspective-n-point pose computation. [Online]. Available:
https://docs.opencv.org/4.x/d5/d1f/calib3d solvePnP.html

[4] (2023) Understanding topics. [Online]. Available:
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-
Tools/Understanding-ROS2-Topics/Understanding-ROS2-
Topics.html

[5] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control. Wiley, 2005. [Online]. Available:
https://books.google.com/books?id=wGapQAAACAAJ

[6] Y. Ding. (2023) Lecture slide: rotations & transformations, forward
kinematics, inverse kinematics, basic image processing, numerical
inverse kinematics.

VI. APPENDICES

Fig. 8: Pinhole Camera Model

Fig. 9: April Tag Location Visualization

Fig. 10: Calculation for θ1

Fig. 11: Technical Drawing of the RX200 Arm

Algorithm 1 Block Detection

Require: video frame,HSV bounds[],min area, shape dict
Ensure: annotated frame

procedure BLOCKDETECTOR
mask ← inRange(video frame,HSV bound[color])
mask ← threshold(mask)
contours← findContours(mask)
for cnt in contours do

area← moment(0, 0)
if area > min area then

center x← moment(1,0)
moment(0,0)

center y ← moment(0,1)
moment(0,0)

sides← approxPolyDP(cnt)
shape← shape dict[sides]

10

Algorithm 2 Path Planning

Require: source, dest, p offset, d offset, des vel
Ensure: trajectory

procedure PATHPLANNING
if arctan 2(dest(y), dest(x)) > 45 then

wrist rot← wrist rot + 90

if arctan 2(dest(y), dest(x)) < −45 then
wrist rot← wrist rot− 90

w point1← source
w point1(z)← source(z) + p offset
w point2← dest
w point2(z)← dest(z) + d offset
for j in joint pos do

max disp← max(|j − j[−1]|)
moving time← max disp

des vel
trajectory ← IK(source,w point1,w point2, dest)

World (mm) Measured (mm) Stack Ht. RMSE (mm)

(0,175,0) (0,177,4) 0 2.58
(0,175,38) (0,177,39) 1 1.29
(0,175,76) (0,179,77) 2 2.38
(0,175,152) (0,181,155) 4 3.87
(0,175,228) (0,179,228) 6 2.31
(-300,-75,0) (-305,-81,0) 0 4.51

(-300,-75,38) (-305,-82,35) 1 5.26
(-300,-75,76) (-307,-83,72) 2 6.56
(-300,-75,152) (-304,-81,150) 4 4.32
(-300,-75,228) (-305,-82,226) 6 5.10

(300,-75,0) (308,-82,-1) 0 6.16
(300,-75,38) (312,-82,33) 1 8.52
(300,-75,76) (313,-82,71) 2 9.00

(300,-75,152) (314,-82,147) 4 9.49
(300,-75,228) (317,-80,224) 6 10.49
(300,325,0) (306,328,2) 0 4.04

(300,325,38) (308,327,37) 1 4.80
(300,325,76) (310,327,74) 2 6.00

(300,325,152) (311,328,150) 4 6.68
(300,325,228) (316,330,227) 6 9.70

TABLE II: Actual vs. Measured World Coordinates

